A New Petrological and Geophysical Investigation of the Present-day Plumbing System of Mt. Vesuvius

نویسندگان

  • A. POMMIER
  • P. TARITS
  • S. HAUTOT
  • M. PICHAVANT
  • B. SCAILLET
  • F. GAILLARD
چکیده

A model of the electrical resistivity of Mt. Vesuvius has been elaborated to investigate the present structure of the volcanic edifice. The model is based on electrical conductivity measurements in the laboratory, on geophysical information, in particular, magnetotelluric (MT) data, and on petrological and geochemical constraints. Both 1-D and 3-D simulations explored the effect of depth, volume and resistivity of either one or two reservoirs in the structure. For each configuration tested, modeled MT transfer functions were compared to field transfer functions from field magnetotelluric studies. The field electrical data are reproduced with a shallow and very conductive layer (~0.5km depth, 1.2km thick, 5ohm.m resistive) that most likely corresponds to a saline brine present beneath the volcano. Our results are also compatible with the presence of cooling magma batches at shallow depths (<3-4km depth). The presence of a deeper body at ~8km depth, as suggested by seismic studies, is consistent with the observed field transfer functions if such a body has an electrical resistivity >~100ohm.m. According to a petro-physical conductivity model, such a resistivity value is in agreement either with a low-temperature, crystal-rich magma chamber or with a small quantity of hotter magma interconnected in the resistive surrounding carbonates. However, the low quality of MT field data at long periods prevent from placing strong constraints on a potential deep magma reservoir. A comparison with seismic velocity values tends to support the second hypothesis. Our findings would be consistent with a deep structure (8-10km depth) made of a tephriphonolitic magma at 1000°C, containing 3.5wt%H2O, 30vol.% crystals, and interconnected in carbonates in proportions ~45% melt 55% carbonates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Petrological and seismic precursors of the paroxysmal phase of the last Vesuvius eruption on March 1944

Abrupt transitions in style and intensity are common during volcanic eruptions, with an immediate impact on the surrounding territory and its population. Defining the factors trigger such sudden shifts in the eruptive behavior as well as developing methods to predict such changes during volcanic crises are crucial goals in volcanology. In our research, the combined investigation of both petrolo...

متن کامل

Investigation geophysical by Magnetometry and Modeling Iron Ore desposit Bijar Kurdestan province

Iron ore deposit Bijar area is located in east north in Kordestan province based of field observation, ore minerals are magnetite, magnetite-martitite and magnetite-pyrite. No. 922 points on the 16 profiles were collected over about 7500 meters in the area. Magnetometers treatment of advanced devices and new GSM-19T is made in Canada. The data were corrected and the magnetic field intensity map...

متن کامل

Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling: Application to the Kaapvaal Craton and Rehoboth Terrane, southern Africa

[1] The electrical conductivity of mantle minerals is highly sensitive to parameters that characterize the structure and state of the lithosphere and sublithospheric mantle, and mapping its lateral and vertical variations gives insights into formation and deformation processes. We review state‐of‐the‐art conductivity models based on laboratory studies for the most relevant upper mantle minerals...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010